Photochemical Reaction of Harmalol. Part 2. Electronic Spectra[†]

Miriana C. Biondic and Rosa Erra-Balsells

Departamento de Quimica Organica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, c.c.74—suc. 30, 1430—Buenos Aires, Argentina

Electronic spectra (absorption, emission and excitation fluorescence spectra) of harmalol in organic solvents have been recorded. The unusual behaviour of this alkaloid has been studied by excited state proton transfer from organic solvents. The effect of the presence of water in the organic media on the electronic spectra and on the prototropic equilibria in the ground and excited singlet states are discussed briefly, as well as those owing to the presence of acidic and basic impurities in the organic media on the electronic spectra. Harmol was selected to be used as a model compound. Emission and excitation spectra of both alkaloids in an adsorbed phase and in the solid state are also described.

As part of our study of the photochemical reactions of carbazole^{1 3} and azacarbazoles (β -carbolines)^{4.5} in organic solution, we decided to examine the photochemical behaviour of dihydro β-carbolines, harmaline (3,4-dihydro-7-methoxy-1methyl-9H-pyrido[3,4-b]indole) and harmalol (3,4-dihydro-1methyl-9H-pyrido[3,4-b]indol-7-ol), in organic solvents. These compounds are markedly fluorescent alkaloids, whose physiological and pharmacological properties have been described elsewhere.⁶¹⁰ In a previous work we have revised the electronic spectra (absorption, emission and excitation fluorescence and phosphorescence spectra) of harmaline in different organic media (in organic solvents at 25 °C and at 77 K, in dispersed phase and in the solid state) as well as its acid-base behaviour in the first excited singlet state (S_1) in the same media.¹⁰ Harmine (7-methoxy-1-methyl-9H-pyrido[3,4-b]indole) was selected to be used as a model compound in that study.¹⁰

The subject of this paper is to investigate the electronic spectra of harmalol in organic solvents (RH) at 25 °C and in frozen solution (at 77 K), in dispersed phase and in the solid state. For the present study we selected harmol (1-methyl-9*H*-pyrido[3,4-*b*]indol-7-ol), a fully aromatic β -carboline, to be used as a model compound.

The acid-base behaviour of harmalol in aqueous solution, in the ground (S_0) and in the electronic excited states $(S_1$ and T_1 ,^{11,12} the photoluminescence in water,¹³ in some organic solvents (EPA,¹³ 1,4-dioxane, acetonitrile and methanol),¹⁴ in adsorbed phase (cellulose),15 and the fluorescence lifetime in ethanol-water mixtures,¹⁶ have been investigated. However, there exists a controversy over the fluorescence of harmalol^{14.17} and information about the fluorescence emission of the neutral harmalol is very scanty. It must be noted that Tomas Vert¹¹ assigned, 'by analogy with neutral harmaline' at $\lambda_{max} = 377$ nm, the fluorescence band of neutral harmalol because the authors say that 'no fluorescence of neutral harmalol could be detected in aqueous solutions'. Camacho¹⁶ only shows the total fluorescence spectrum of harmalol in ethanol solution ‡ and Dogra¹⁴ has reported the same to be at 444 nm for the neutral harmalol species. It is noteworthy that Olba et al.¹⁵ pointed out that it should be noted that they had not obtained any solution where the only emitting species was neutral harmalol as it had been in the case of harmol in methanol solution.¹⁸ Hadley¹³ shows that the fluorescence emission of aqueous harmalol at

pH 6.40 originates at 376 nm with two peaks of equal intensity at 420 nm and 465 nm.

In view of the paucity of data it was of interest to examine the electronic spectra (absorption, fluorescence excitation and emission) of harmalol in different organic solvents, exciting at different wavelength values to solve the above mentioned discrepancy. Surprisingly, we observed neither a typical fluorescence emission spectrum nor an excitation spectrum of neutral harmalol in organic solutions, at room temperature, at 77 K, in dispersed phase and in solid state. This result agrees with that previously observed for harmaline¹⁰ and with the suggestions of Tomas Vert¹¹ and Olba.¹⁵ The study was extended to provide an example of a fully aromatic β -carboline, harmol, and to compare its behaviour with the unusual one observed for harmalol.

Finally, some additional electronic spectra of both alkaloids were run to show that the absorption spectra of harmalol are, not only a good tool to detect the presence of water and acidic impurities in organic media, as those of harmaline are,¹⁰ but are also useful to detect the presence of basic impurities in organic solvents.

Experimental

Harmol and harmalol were purchased from Fluka. Harmalol was prepared from its hydrochloride, obtained from Fluka. The aqueous hydrochloride solution was made alkaline with sodium carbonate and cooled. The solid obtained was filtered off and (i) used without further purification (commercial harmalol) and (ii) recrystallized from water. The purity of the alkaloids was determined by TLC, m.p. and MS. The solutions of these compounds (1.0 mg/100 cm³) were prepared in organic solvents in the dark and used immediately to avoid photoreactions. Organic solvents were purified as described elsewhere.^{10.19-22} Immediately before use, the solvents were (i) dried and then distilled: DD solvent; (ii) distilled and then dried over molecular sieves (4 Å): MSD solvent; or (iii) distilled and then percolated through a chromatography column filled with basic aluminium oxide (M. Woelm-Eschwege, activity I): AD solvent. Anhydrous methanol was obtained by treatment with magnesium methoxide.¹⁹ Analytical grade sulfuric acid (E. Merck) and potassium hydroxide (E. Merck) were used to prepare solutions of various acidities. Water of very low conductivity (purified by MilliQ method) was used.

Absorption spectra were recorded in a Hewlett Packard HP 8451A diode array spectrophotometer (25–28 °C) using a filter wheel (HP 08451-60302, position 2). Corrected excitation fluorescence and phosphorescence spectra were recorded using

[†] Part 1: see ref. 10.

[‡] In ref. 16, the total fluorescence spectrum of neutral harmalol in ethanol solution ($\lambda_{exc} = 310$ nm) is shown. Only the λ_{max} of the cationic species was assigned (480 nm).

Fig. 1 Effect of added water on the absorption spectra of harmalol in organic solvents: 1, methanol; 2, methanol + water; 3, ethanol; 4, ethanol + water; 5, *tert*-butanol; 6, *tert*-butanol + water; 7, propan-2-ol; 8, propan-2-ol + water.

a Perkin-Elmer LS-5 spectrofluorimeter, whose output is automatically corrected for instrumental response by means of a Rhodamine B quantum counter, with low temperature, phosphorescence, and Front Surface (FSA) accessories according to methods previously described.¹⁰ The spectra at 77 K were recorded in transparent matrices produced by freezing ethanol solution contained in a round cell (2 mm path length) with liquid nitrogen, as described elsewhere.¹⁰ Using the FSA, measurements of the intensity of the fluorescence and phosphorescence from powdered alkaloid samples and their hydrochlorides, as well as from the adsorbed phase (TLC aluminium sheet silica gel 60 and paper Whatman no. 41) were made.

Results and Discussion

Absorption Spectra.—The absorption spectra of harmalol in different organic solvents were recorded (Table 1). The acidified organic solutions (Table 1, RH + SA: organic solvent with 1% 0.5 mol dm⁻³ sulfuric acid) of harmalol show absorption spectra

 $(\dot{\lambda}_{max} = 370-384 \text{ nm})$ very similar to those previously described ^{11,15,16} recorded in aqueous and ethanolic media at pH 1. As shown in Table 1, in non-polar as well as in polar aprotic solvents, harmalol exists predominantly in the neutral form in the S₀ state (acetonitrile $\lambda_{max} = 332$ nm and dichloromethane $\dot{\lambda}_{max} = 330$ nm). In polar protic solvents, such as water and alcohols, the absorbance and the wavelength value of the absorption maximum of the 0-0 band of harmalol depend on the hydrogen-bond donor ability of the solvent. The acidities of alcohols and organic solvents have been measured by conductivity^{23 25} and by solvatochromic shift (x-scale of solvents)^{26.27} methods. As shown in Table 1, in tert-butyl alcohol and in propan-2-ol solution harmalol exists predominantly in the neutral form in the S₀ state ($\lambda_{max} = 340$ nm), and in more acidic solvents like methanol ($\lambda_{max} = 342$ and 382 nm), ethanol ($\lambda_{max} = 342$ and 384 nm), chloroform ($\lambda_{max} =$ 332 and 376 nm), methanol-water and ethanol-water (Fig. 1) harmalol exists in both neutral (N) and cationic (C) forms in the S₀ state (Scheme 1). In conclusion, formation of a strongly hydrogen bonded complex or a cationic species is favoured in the presence of acidic alcohols, as can be seen from Fig. 1; the presence of water in the solution modifies the absorption spectra of harmalol in propan-2-ol as well as in ethanol and methanol solution because water behaves as an acidic solvent in the presence of harmalol. This behaviour is due to the high basicity of harmalol in the S₀ state $[pK_a(S_0) \ 10^{11.15} \ 9.8$ and 11.6].¹⁴ The absorption data of the fully aromatic parent β carboline, harmol (Table 2), clearly indicate that harmol is not basic enough to give the cationic species in the ground state $[pK_a (S_0) 8.0]^{15.28}$ in alcoholic media (methanol, ethanol, methanol-water and ethanol-water media). By virtue of the unsaturation in the piperidine centre, harmalol is more basic than harmol. The absorption spectra of cationic harmol in each organic medium were obtained by the addition of appropriate amounts of sulfuric acid.

It is interesting to mention that Tomas Vert *et al.*²⁸ could not see the absorption spectrum of isolated neutral harmol species in aqueous media (pH 1.05–13.00). In order to assign this maxima the spectrum of neutral harmol in tetrahydrofuran solution was recorded.²⁸ The anomalous behaviour shown by harmalol in *tert*-butyl alcohol solution when water was added (Fig. 1) could be explained by taking into account the Swain– Grunwald mechanism,^{29,30} which has been discussed in our

Scheme 1 Prototropic equilibria of harmalol as detected from the ground state (S_0) and the excited state (S_1)

J. CHEM. SOC. PERKIN TRANS. 2 1993

Table 1 Electronic absorption and fluorescence emission and excitation spectral data for harmalol in organic solution at 25 °C ($A = \varepsilon lc$: A. absorbance; ε in dm³ mol⁻¹ cm⁻¹; λ in nm: RI, relative intensities: c. 3.93 × 10⁻⁵ mol dm⁻³)

	Absor	rption dat	a	Emiss	sion data	L	Excita	ation data		
Solvent	λ _{max}	A ^a	log ε	i.exc	λ _{max}	RI	i.em	i.max	RI	
МеОН	342	0.470		280	482	42	390	_	_	
	382	0.365			532	32	430	392	23	
				300	467	39	480	260	150	
				330	485	110		392	530	
				390	483	530				
$MeOH - AE^{b}$	342	0.486								
MaOU L SAS	202	0.362	4 22	200	490	00	200			
MeOH + SA	382	0.814	4.32	200	400	90 50	190	260	400	
				220	470	200	400	200	400	
				330	4/3	300		300	800	
FtOH	342	0.531		260	482	135	390			
Eton	384	0.352		300	480	18	480	260	130	
	504	0.552		330	479	70		391	530	
				390	483	530			000	
FtOH – AF	342	0.521		0,0	100	000				
	384	0.352								
FtOH + SA	384	0.764	4 29	260	475	430	390		_	
Eton + Sit	501	0.701		300	469	45	480	260	44	
				330	475	315	400	360(sh)	680	
				550	475	515		390	900	
Pr ⁱ OH	340	0.702	4.25	260	477	14	390	_	_	
				300	477	3	480	266	16	
				330	477	8		396	100	
				390	477	100				
Pr ⁱ OH + SA	386	0.846	4.33	260	474	430	390		_	
				300	472	52	480	263	440	
				330	476	360		360(sh)	780	
								391	1000	
Bu'OH	340	0.644	4.21	280	476	13	390	_	_	
				300	470	6	480	265	55	
				330	478	20		394	270	
				390	478	220				
Bu'OH + SA	384	0.686	4.24	280	478	140	380	_	_	
				300	476	50	500	260	400	
				340	475	550		360(sh)	600	
								390	800	
CH3CN	332	0.603		280	476	26	390		_	
	380	0.165		300	472	14	480	265	95	
				340	473	120		364(sh)	300	
				380	470	430		390	440	
				450	_	—	560	265	14	
								364(sh)	40	
								390	65	
$CH_3CN + SA$	378	0.744	4.28	280	475	120	390		_	
				300	463	73	480	263	220	
				340	474	530		360(sh)	600	
						_		392	750	
CH ₂ Cl ₂	330	0.368	3.97	260	470	4	390		— <u> </u>	
				300			480	260	5	
				330	470	3		360(sh)	16	
	370	0.410	4.00	390	480	20		385	22	
$CH_2CI_2 + SA$	3/0	0.419	4.03	260	481	13	390			
				300	464	2	480	259	12	
				330	4/2	7		395	40	
CUC		0.107		390	481	38				
CHCl ₃	332	0.127		280	450	2	380	-	—	
	3/6	0.103		300		_	450	260	15	
				340	449	21		379	48	
				380	446	46	550	260	2	
				450				386	5	
								430(sh)	1	

^a Absorbances (A) are indicated when both the neutral and the cationic harmalol absorb, square 1 cm path quartz cells were used. ^b AE, after excitation, the data were obtained after recording a fluorescence emission and excitation spectra on the same solution. ^c SA, with 1% sulfuric acid (0.5 mol dm ³).

previous work.¹⁰ The absorption maximum of the neutral harmalol is reported to be at 329–330 nm by Dogra¹⁴ in 1,4-dioxane and in acetonitrile, and at 340 nm in aqueous solution

at pH 13.98 by Tomas Vert.¹¹ On the other hand, the absorption maximum of harmalol in spectrograde methanol is reported to be at 375 nm,¹⁴ whereas the same absorption band

Table 2 Electronic absorption and fluorescence emission and excitation spectral data for harmol in organic solution at 25 °C ($A = \varepsilon lc$; A. absorbance, ε in dm³ mol⁻¹ cm⁻¹: λ in nm; RI, relative intensities: c, 5.04 × 10⁻⁵ mol dm⁻³)

	Absorptio	on data	Emiss	ion data		Excita	ation data		
Solvent	i, max	log ε"	i.exc	i, _{max}	RI	i.em	i. Max	RI	
 МеОН	302	4.27	280	352(sh)	210	380	256	310	
	324(sh)	3.87		366	270		300	280	
	338	3.77		410(sh)	140		324	230	
			-	456	90	400	336	210	
			300	352(sh)	320	420	256	215	
				303 410(-h)	400		304	200	
				410(sn)	140		324	170	
			330	450(SII) 352(ch)	240	460	256	160	
			550	365	310	-00	304	140	
				410(sh)	180		324	125	
				456(sh)	120		336	120	
			380	460	12				
MeOH + SA [*]	330	4.17	280	416	105	380	254	64	
			300	419	300		330	60	
			330	417	700	420	254	730	
			380	416	200		332	700	
EtOH	304	4.21	260	353(sh)	700	380	255	620	
	326(sh)	3.86		367	800		302	580	
	338	3.77	300	353(sh)	525		337	370	
				366	700				
EtOH + SA	330	4.29	300	419	420	380	257	60	
			330	420	750		335	60	
						440	258	700	
DIOU	204	4 21	260	252	770	200	330	700 590	
Pron	304 324(ch)	4.21	200	352	820	300	204	550	
	324(81)	3.60	340	303	450		303 323(sh)	420	
	338	5.74	540	365	580		336	370	
			300	352	670	420	256	70	
			500	365	900		304	66	
			330	352	480		323(sh)	50	
				366	600		335	45	
						440	254	25	
							302	23	
							323(sh)	19	
							335	18	
Pr'OH + SA	332	4.25	300	417	400	380	265	63	
			330	417	830	400	334	65	
						420	264	700	
						440	332	/00 570	
						440	204	600	
	304	1 22	300	351	720	380	258	550	
виоп	304	3.87	300	364	900	580	300	500	
	338	3.69	330	351	530		324	400	
	550	5.07	550	364	700		336	350	
				201		420	258	65	
							300	57	
							326	48	
							338	45	
Bu'OH + SA	330	4.32	300	414	400	380	262	100	
			330	415	750		327	110	
						420	258	750	
						••••	336	740	
CH ₃ CN	300	4.18	300	348(sh)	530	380	252	350	
	322(sh)	3.11	220	359	000		296	340	
	334	3.05	330	349(SD) 360	333		320	230	
				300	410	420	256	35	
						420	295	30	
							318	25	
							330	24	
$CH_3CN + SA$	326	4.30	300	421	400	380	258	50	
J			330	423	680		336	53	
						420	258	650	
				.		· · ·	332	710	
CH ₂ Cl ₂	298	3.74	280	345	260	380	296	260	
	320	3.35	200	356	350		518	140	
	334	3.28	300	545 254	4/0	420	23U 204	125	
			220	330 356	270 280	420	320	10	
			370		200		332	10	
								-	

 Table 2 (continued)

	Absorptio	n data	Emiss	ion data		Excita	tion data	
Solvent	λ _{max}	log ε"	i.exc	i,max	RI	i.em	i. Kmax	RI
 CHCl ₂	326	3.60	280	395	7	380	251	65
			300	395	40		322	65
			330	394	70		350(sh)	35
			380	449	4	420	251	53
							322	55
							350(sh)	30
						450	251	20
							322	21
							350(sh)	13
							390(sh)	4
						550		

" Square 1 cm path quartz cells were used. " SA, with 1% sulfuric acid (0.5 mol dm⁻³).

is reported as a broad band between 320–410 nm in Uvasol grade ethanol.¹⁶ Comparing these reported spectroscopic data with our data in organic solvents (Table 1) and in organic solvent–water mixtures (Fig. 1) we conclude that the presence of water in spectrograde ethanol (max. 5%)³¹ or acidic impurities in alcohols could explain the absorption spectra described.^{11,14,16}

Fluorescence Emission Spectra.—The fluorescence emission maxima of harmalol in different organic solvents are listed in Table 1. Comparing the fluorescent spectrum in the neutral organic solvents with that in acidified organic solvents (Table 1, methanol and methanol + sulfuric acid, ethanol and ethanol + sulfuric acid, *tert*-butyl alcohol and *tert*-butyl alcohol + sulfuric acid, and the others), the 470–483 nm band is assigned to the emitting cationic species. Our assignment of the cationic harmalol emission bands seems to be correct because the addition of acid to harmalol solutions, mentioned above, leads to the formation of a species, whose spectral characteristics (absorption and emission spectra) resemble those described by Tomas Vert,¹¹ by Olba,¹⁵ by Pardo,¹⁶ and by Dogra^{12.14} in acidic aqueous solution.

As is known, harmalol in the S_1 state is more basic than in the S_0 state $[pK_a(S_0): 10.0^{11.15}$ and $pK_a(S_1): 22.6^{15}]$. Thus, in going from non-polar to polar aprotic solvents and polar protic solvents (Table 1, fluorescence emission spectra), the formation of a strongly-emitting hydrogen-bonded complex (N*··· HR) and/or the excited cationic species (C*) occurs easily, even with those organic solvents in which S_0 harmalol is not protonated (Table 1, absorption spectra of harmalol in *tert*-butyl alcohol, in propan-2-ol, in acetonitrile and in dichloromethane).

As can be seen in Table 1 the intensity of the fluorescence maximum depends on the protic character of the solvent and on the exciting wavelength value. The effect of varying the exciting wavelength at which emission measurements were taken was checked in each medium (Table 1). For example, the absorption spectrum of harmalol in propan-2-ol solution [Table 1 and Fig. 2(a)] did not show the presence of the cationic species; meanwhile we only observed the fluorescence band of the corresponding cationic species on exciting at 260, 300, 330 and 390 nm.

On the other hand we were not able to observe, at any exciting wavelength value, the 444 nm fluorescence band of the emitting neutral species from neutral harmalol solutions, as has been reported by Dogra.¹⁴ The 352, 368 and 377 nm fluorescence bands described by other authors^{11.16} will be discussed later (Fluorescence excitation spectra section).

Protonation of neutral species of harmalol in the excited state was described as very rapid by Tomas Vert¹¹ and by Pardo¹⁶ in aqueous alkaline and in aqueous–ethanolic alkaline solution, but this behaviour was not described by Dogra in acetonitrile solution.¹⁴ As shown in Table 3, in aqueous harmalol solution the fluorescence emission band corresponding to the excited cationic harmalol is observed.

A comparison of the absorption and fluorescence spectra of harmalol (Table 1) and harmol (Table 2) in methanol, in acidified methanol solution, in ethanol and in acidified ethanol solution indicates that the electronically excited harmol is less basic than the electronically excited harmalol and that the harmol does not form the emitting electronically excited cationic harmol either in methanol or in ethanol, dichloromethane or acetonitrile solution.

We also observed that the fluorescence bands of neutral and cationic harmol are less sensitive to the variation of the exciting wavelength value (Table 2) and that harmol is a more efficient fluorophore species. It is interesting to mention that a different harmol behaviour was described by Pardo.¹⁶ This author stated that in ethanol solution the fluorescence emission spectrum, which was recorded on exciting at a wavelength where the neutral species can only absorb (313 nm), corresponds to both neutral and cationic species, and that he believes there is a proton transfer in the excited state in alcoholic solution. We think that the presence of water and/or acidic impurities in the ethanol solution would explain the results described by this author (see ref. 16, harmol absorption and fluorescence spectra in ethanol solution).

Fluorescence Excitation Spectra.—In our first experience we realized that the excitation spectra of commercial neutral harmalol in propan-2-ol solution at $\lambda_{em} = 380$ nm was different from that observed at 440 nm [Fig. 2(b)]. The former ($\lambda_{em} = 380$ nm, $\lambda_{max} = 303$ nm) was similar to the excitation fluorescence spectra and also to the absorption spectrum of neutral harmol [Table 2 and Figs. 2(a) and 2(b)]. The latter ($\lambda_{em} = 440$ nm) agreed with both the excitation spectra of the cationic harmalol (harmalol in propan-2-ol + sulfuric acid) and with the excitation spectra of neutral harmol [Figs. 2(a) and 2(b)]. Besides, when harmol was added to the harmalol-propan-2-ol solution a higher relative intensity at $\lambda_{max} = 303$ nm [Fig. 2(b)] and at $\lambda_{max} = 365$ nm [Fig. 2(c)] was observed in the excitation and emission fluorescence bands respectively.

We also observed that at $\lambda_{em} = 380$ nm the excitation spectra of neutral harmalol in methanol, ethanol, *tert*-butyl alcohol, dichloromethane, chloroform and acetonitrile solution ($\lambda_{max} = 300$ nm) showed low relative intensity values and agreed with that of neutral harmol.

The results reported above allow us to conclude that harmalol in organic media does not show typical excitation and fluorescence emission spectra owing to its neutral form. Its electronic excited state (N^*) readily gives cationic excited

harmalol (C*, Scheme 1) which shows a highly efficient fluorescent emission (Table 1). The emission described in literature as corresponding to neutral harmalol [Fig. 2(c)

 $\lambda_{max} = 365$ nm and ref. 16) would be due to the harmol present as impurity in commercial harmalol or due to the oxidation of harmalol to harmol.

(a)

Absorbance

Table 3 Electronic fluorescence and phosphorescence emission and excitation spectral data for harmalol and harmol in ethanol solution (round cell, ^a 298 K), frozen solution (77 K), in adsorbed phase and in solid state (λ in nm: RI, relative intensities: c. harmalol: 3.93 × 10⁻⁵ mol dm⁻³, harmol: 5.04 × 10⁻⁵ mol dm⁻³)

		Emiss	sion data		Excita	ation data		
 Method	Temperature	i.exc	i.max	RI	i.em	A _{max}	RI	
Harmalol								
Fluorescence								
Figurescence	200 V	280	179	25	200			
EIGH solution	290 N	200	4/8	23	380	262	120	
		240	4/8	10	480	202	130	
		340	475	115	550	391	395	
		380	4/9	330	550	262	38	
		4/0	547	15		391	100	
	77 V	200	445	76	200	465	20	
	// K	280	445	/5	380			
		240	484	150	430	370	315	
		340	447	330	40.0	390	365	
		••••	468	325	480	370(sh)	500	
		380	447	600		395	680	
			468	630		412(sh)	620	
		450	489	390		440(sh)	350	
					510	370(sh)	260	
						392	350	
						411	355	
						440	300	
Absolute EtOH solution	298 K	280	476	10	380			
		300	476	4	480	262	50	
		340	476	40		392	165	
		380	475	130	550	262	16	
		470	548	13	550	302	40	
		470	940	15		470	40	
	77 K	280	115	22	200	4/0	10	
	// N	260	445	52	380	252	100	
		240	489	57	430	352	100	
		340	447	130		368	110	
		• • • •	460(sh)	110		386	115	
		380	447	225	450	350(sh)	165	
			466	220		370(sh)	220	
		400	448	225		389	265	
			470	225	480	350(sh)	160	
		420	448	110		393	235	
			487	180		408(sh)	215	
		450	493	160	510	393(sh)	125	
		470	497	7		411	135	
						450	130	
EtOH + SA ^b solution	298 K	280	477	56	380	_		
		300	473	21	480	260	330	
		340	480	325		258(sh)	600	
		380	482	770		388	870	
		450	480	33	550	260	80	
		470			550	358(ch)	150	
						288	205	
	77 K	280	450	25	380	500	203	
		300	447	76	430	> 050		
		500	460(ch)	70	490	> 950		
		240	× 050	/1	40U 510	2930 200(-h)	440	
		380	> 950		510	300(SN) 300	440	
		360	~ 930	17		390	620	
		430	403(sn)	10				
Adsorbed phases silica get	209 V	200	460	150	440	370	1.40	
Ausorbeu phase. sinca gei	290 K	380	400	150	460	370	140	
					500	392	170	
					500	360(sh)	105	
						390	130	
Domon Wilson and	200 1/	200						
raper whatman no. 41	298 K	280		—	450	396	5	
		300		—	550	396	1	
		340	458	3				
		380	458	5				
N 1 11 1 1 1 1			_					
Powdered hydrochloride	298 K	280	511	355	380	—	_	
		300	511	340	480	282	260	
		380	510	320		392	260	
		440	511	380		438	260	
					510	283	360	
						393	360	
						438	360	

Table 3 (continued)

Method Temperature $\overline{\lambda}_{uv}$ $\overline{\lambda}_{uus}$ RI $\overline{\lambda}_{uu}$ RI Harmol Fluorescence EKOH solution 298 K 300 352 900 380 302 450 330 352 300 326 210 338 170 300 338 170 338 61 300 338 170 338 61 400 338 61 10 338 10 303 365 430 400 308 303 10 303 365 430 308 303 10 338 10 303 365 430 308 303 10 338 30 10 333 30 10 333 30 10 15 340 30 10 15 340 30 10 12 44 10 30 10 12			Emiss	sion data		Excitation data			
Harmol Fluorescence EROH solution 298 K 300 352 770 380 902 450 330 352 300 336 370 420 303 100 380 400 - - 338 60 300 352 300 338 170 338 60 300 - - - 338 60 326 770 33 60 300 352 300 400 308 370 33 60 3228 340 303 333 330 330 330 330 100 328 340 330 100 330 330 100 330 300 100 100 370 4 90 330 10 100 370 4 90 300 125 300 10 10 370 4 90 300 125 330 115 330 115 330	Method	Temperature	λ _{exc}	, K _{max}	RI	i, em	λ _{max}	RI	
Harmod Fluorescence EtOH solution 298 K 300 352 770 300 302 450 300 302 450 300 30 420 5 30 420 5 30 420 5 30 420 5 30 420 5 30 420 30 30 420 30 30 30 30 30 420 30 30 30 30 30 30 30 30 30 30 30 30 30									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Harmol								
EVALUATION 2.50 K 260 366 950 260 326 210 326 210 326 210 326 210 326 210 326 70 333 100 326 70 333 100 330 330 330 330 330 330 333 100 333 60 300 420 5 330 330 333 10 333 60 330 3328 10 330 3328 10 330 3328 340 3328 340 3328 340 3328 340 3328 340 3328 340 330 346 310 330 340 310 330 340 310 330	Fluorescence EtOH solution	208 K	300	357	770	380	302	450	
330 332 100 420 53 170 380 420 5 325 70 400 - - 338 60 370 33 60 370 35 10 370 3 60 370 33 15 480 303 10 328 10 370 355 430 308 400 328 10 330 355 50 330 30 10 328 10 330 355 50 330 30 10 10 30 30 10 10 330 355 50 330 30 10 <	EIGH solution	290 K	300	366	950	300	326	210	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			330	352	300		338	170	
$\begin{array}{ccccccc} & & & & & & & & & & & & & & & &$			000	366	370	420	303	100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			380	420	5		326	70	
$ \begin{array}{ccccccc} & & & & & & & & & & & & & & & &$			400		_		338	60	
$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$							370	15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						480	303	10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							328	10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							370	3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		77 K	280	350	380	400	308	370	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				365	430		328	340	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			220	383	210	420	340	310	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			330	365	//0	420	310	150	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				383	220		330 240(-1-)	180	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			270	405(sh)	33U 29		340(sh)	1/3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3/0	404	68	400	370	50	
Phosphorescence 77 K 310 422 195 430 308 (b) 205 330 433 105 235 340 95 340 95 330 435 100 330(sh) 90 330(sh) 90 433 101 330(sh) 90 330(sh) 90 433 105 330 425 100 330(sh) 90 433 105 340 302 410 375 10 44sh(sh) 8 7 30 35 350 325 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 34			400		_	480	330	10	
Phosphorescence 77 K 310 422 195 430 308 205 330 423 95 480 310 125 340 95 330 423 95 480 310 125 340 95 330 423 95 480 310 125 340 80 370 474 10 375 10 340 80 375 10 Fluorescence 298 K 280 351 215 380 302 410 325(sh) 200 338 170 330 351 225 338 30 338 30 336 300 351 620 338 30 338 30 336 30 336 30 336 30 338 30 338 30 338 30 338 30 338 30 338 30 338 30 338 340 15 338							570	4	
$ \begin{array}{c} \text{Hosphorescence} \\ \text{Phosphorescence} \\ \text{T7 K} \\ \begin{array}{c} 300 \\ 298 \\ 280 \\ 300 \\ 351 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 360 \\ 365 \\ 350 \\ 360 \\ 365 \\ 350 \\ 380 \\ 462 \\ 1 \\ 480 \\ 300 \\ 381 \\ 380 \\ 462 \\ 1 \\ 480 \\ 300 \\ 381 \\ 380 \\ 462 \\ 1 \\ 480 \\ 300 \\ 381 \\ 383 \\ 420 \\ 328 \\ 338 \\ 380 \\ 420 \\ 328 \\ 338 \\ 420 \\ 328 \\ 338 \\ 390 \\ 1 \\ 330 \\ 383 \\ 420 \\ 328 \\ 338 \\ 390 \\ 2 \end{array} $	Phosphorescence	77 K	310	477	105	430	308	205	
Fluorescence 200 340 395 Absolute EtOH solution 298 K 280 351 215 340 80 Fluorescence Absolute EtOH solution 298 K 280 351 215 380 302 410 Absolute EtOH solution 298 K 280 351 215 380 302 410 300 351 250 3325(sh) 200 338 170 300 351 620 338 170 365 880 420 302 82 300 351 620 338 30 336 30 336 30 331 325(sh) 320 82 325(sh) 338 30 300 351 620 380 sat 340 170 343 30 300 351 620 380 sat 340 170 340 376 170 300 sat 365 460 30	rnosphorescence	// N	510	434	215	-150	330(eh)	115	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				450	235		340	95	
Fluorescence 77 K 280 351 215 330 (sh) 30 433 115 340 80 370 4433 115 340 80 370 4433 115 340 80 370 4434 (sh) 8 375 10 Fluorescence 298 K 280 351 215 380 302 410 300 351 620 325 (sh) 200 326 338 170 300 351 285 332(sh) 38 38 38 300 462 1 480 302 4.5 400 470 1.5 388 38 30 300 sat 300 sat 300 365 300 328 190 300 sat 300 sat 300 328 100 338 30 300 sat 300 sat 300 328			330	423	95	480	310	125	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			550	435	100	400	330(sh)	90	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				453	115		340	80	
Fluorescence Absolute EtOH solution 298 K 280 351 215 380 302 410 300 351 620 338 170 365 260 3325(sh) 200 300 351 620 338 170 365 380 420 302 41 300 351 620 338 170 365 350 338 10 300 351 620 338 170 365 350 338 30 300 365 350 338 30 365 350 338 30 300 462 1 480 306 350 322 3 30 300 sat 350 420 380 sat 340 170 300 sat 340 170 338 48 400 483 2 460 306 11 328 73 340 328 7			370	474	10		375	10	
Fluorescence Absolute EtOH solution 298 K 280 351 215 380 302 410 365 260 325(sh) 200 300 351 620 338 170 365 880 420 302 82 330 351 225 325(sh) 380 300 351 285 325(sh) 380 302 4.5 300 351 285 325(sh) 38 30 380 462 1 480 302 4.5 400 470 1.5 338 3 77 K 280 350 420 380 sat 300 sat 340 170 328 190 300 sat 340 170 330 365 410 420 366 155 380 410 420 366 11 328 17 330 365 410 420 306			2.0	494(sh)	.0		5.5	••	
Fluorescence Absolute EtOH solution 298 K 280 351 215 380 302 410 300 351 620 338 170 300 351 620 338 170 300 351 285 338 170 380 420 302 82 330 351 285 338 302 4.5 300 462 1 480 302 4.5 400 470 1.5 325 3 3 303 365 460 400 380 sat					0				
Absolute EtOH solution 298 K 280 351 215 380 302 410 300 351 260 325(sh) 200 325(sh) 200 300 351 620 338 170 365 880 420 302 82 330 351 285 325(sh) 38 30 380 462 1 440 302 4.5 400 470 1.5 338 30 380 462 1 440 302 4.5 300 350 420 380 sat 338 30 77 K 280 350 420 380 sat 340 170 300 sat 340 170 328 55 380 - 338 420 306 11 330 365 410 420 306 11 338 6 380 - -	Fluorescence								
$\frac{365}{300} = \frac{260}{351} = \frac{325(sh)}{620} = \frac{200}{338} = \frac{170}{336} = \frac{300}{316} = \frac{351}{620} = \frac{325(sh)}{338} = \frac{200}{302} = \frac{82}{323} = \frac{330}{316} = \frac{351}{300} = \frac{325(sh)}{318} = \frac{300}{300} = \frac{351}{316} = \frac{300}{310} = \frac{351}{318} = \frac{300}{316} = \frac{351}{318} = \frac{300}{316} = \frac{351}{318} = \frac{300}{316} = \frac{351}{318} = 3$	Absolute EtOH solution	298 K	280	351	215	380	302	410	
300 351 620 338 170 365 880 420 302 82 330 351 285 325(sh) 38 30 365 350 338 30 365 350 338 30 380 462 1 480 302 4.5 300 370 1.5 325 3 338 30 380 462 1 480 302 4.5 400 470 1.5 325 3 338 30 380 462 10 420 380 sat - - 400 1.5 - - 388 190 300 382(sh) 210 328 55 - - 338 420 328 55 - - 338 420 328 55 - - - 338 6 - - - 338 6 - - - - - - - 338 6 - - <td></td> <td></td> <td></td> <td>365</td> <td>260</td> <td></td> <td>325(sh)</td> <td>200</td>				365	260		325(sh)	200	
$\frac{365}{330} \frac{880}{351} \frac{420}{285} \frac{302}{325(sh)} \frac{38}{38} \\ \frac{365}{350} \frac{350}{338} \frac{325(sh)}{38} \frac{38}{30} \\ \frac{360}{462} 1 480 302 4.5 \\ \frac{300}{470} 1.5 \frac{338}{338} \frac{3}{30} \\ - - - \frac{338}{38} \frac{3}{30} \\ - - - \frac{338}{38} \frac{100}{306} \frac{350}{382(sh)} \frac{300}{28} \frac{15}{300} \\ \frac{300}{300} \frac{sat}{381} \frac{300}{420} \frac{328}{380} \frac{190}{300} \\ \frac{300}{300} \frac{sat}{381} \frac{400}{420} \frac{328}{306} \frac{190}{306} \\ \frac{383}{383} \frac{420}{420} \frac{328}{328} 55 \\ \frac{380}{380} - - - \frac{338}{38} \frac{48}{88} \\ \frac{400}{483} 2 460 306 11 \\ \frac{328}{328} 7 \\ \frac{338}{340} \frac{3}{38} \\ \frac{390}{11} \\ \frac{480}{306} 5 \\ \frac{328}{328} 7 \\ \frac{338}{340} \frac{3}{38} \\ \frac{390}{12} \\ \frac{480}{306} 5 \\ \frac{328}{328} 7 \\ \frac{338}{340} \frac{3}{38} \\ \frac{390}{12} \\ - - - - \\ \hline Fluorescence \\ FtOH + SA solution \\ 298 K \frac{280}{300} \frac{415}{15} 79 \frac{380}{246} \frac{246}{170} \\ \frac{300}{330} \frac{416}{220} \frac{250}{330} \frac{310}{100} \\ \frac{330}{330} 415 930 420 250 sat \\ \frac{300}{330} 415 55 480 246 290 \\ \frac{300}{330} 950 \\ \frac{400}{415} 55 480 246 290 \\ \frac{300}{30} 950 \\ 30$			300	351	620		338	170	
$\frac{330}{365} \frac{351}{350} \frac{285}{350} \frac{325(sh)}{338} \frac{38}{30} \frac{365}{350} \frac{350}{325} \frac{33}{338} \frac{30}{30} \frac{365}{400} \frac{400}{470} \frac{1.5}{1.5} \frac{325}{338} \frac{3}{338} \frac{3}{3} \frac{3}{300} \frac{3}{300} \frac{3}{318} \frac{3}{3} \frac{3}{300} \frac{3}{300} \frac{3}{318} \frac{3}{30} \frac{3}{300} \frac{3}{318} \frac{3}{310} \frac{3}{300} \frac{3}{315} \frac{3}{310} \frac{3}{300} \frac{3}{310} \frac{3}{300} \frac{3}{310} \frac{3}{300} \frac{3}{318} \frac{4}{310} \frac{3}{310} \frac{1}{310} \frac{1}{310} \frac{3}{310} \frac{3}{310$				365	880	420	302	82	
$\frac{365}{380} + \frac{350}{462} + \frac{338}{1} + \frac{300}{302} + \frac{4.5}{4.5} \\ \frac{400}{470} + \frac{1.5}{1.5} + \frac{338}{338} + \frac{30}{365} \\ \frac{338}{338} + \frac{30}{3225} + \frac{338}{338} + \frac{30}{365} \\ \frac{365}{460} + \frac{400}{306} + \frac{350}{350} \\ \frac{382(sh)}{300} + \frac{210}{328} + \frac{340}{170} + \frac{110}{328} + \frac{340}{170} \\ \frac{300}{330} + \frac{365}{365} + \frac{410}{420} + \frac{420}{306} + \frac{306}{105} \\ \frac{383}{380} + \frac{420}{228} + \frac{338}{240} + \frac{480}{328} + \frac{338}{240} + \frac{480}{328} + \frac{338}{2400} + \frac{480}{328} + \frac{338}{2400} + \frac{480}{328} + \frac{338}{2400} + \frac{6}{328} + \frac{3390}{340} + \frac{10}{330} + \frac{330}{390} + \frac{10}{330} + \frac{340}{330} + \frac{33}{390} + \frac{10}{25} + \frac{10}{330} + \frac{10}{$			330	351	285		325(sh)	38	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				365	350		338	30	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			380	462	1	480	302	4.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			400	470	1.5		325	3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							338	3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							400	1.5	
365 460 400 306 350 382(sh) 210 328 190 300 sat 340 170 330 365 410 420 306 105 383 420 328 55 380 - 338 48 400 483 2 460 306 11 328 7 380 - - 338 48 6 390 1 328 7 380 - - 338 6 11 328 7 338 6 400 483 2 460 306 5 328 3 340 3 990 1 480 306 5 328 3 340 3 990 22 95 430 308 110 330(sh) 70 450 120 342 55 330 440 300 450 55 370 - - - - - <t< td=""><td></td><td>77 K</td><td>280</td><td>350</td><td>420</td><td>380</td><td>sat</td><td>250</td></t<>		77 K	280	350	420	380	sat	250	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				365	460	400	306	350	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			200	382(sh)	210		528	190	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			300	sat	410	430	340	1/0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			530	505	410	420	300	105	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			200	383	420		328 229	22	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			580	407		ALD	338 204	48	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			400	483	2	400	200	7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							320	6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							300	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						480	306	5	
Phosphorescence 77 K $300 422 95 430 308 110 330(sh) 70 450 120 342 55 330 422 46 434 50 450 56 370 - - - - - - - - -$						-100	378	2	
Phosphorescence 77 K 300 422 95 430 308 110434 110 $330(sh)$ 70450 120 342 55330 422 46434 50450 56370 $ -FluorescenceEtOH + SA solution 298 K 280 415 79 380 246 170300$ 416 220 330 100330 415 930 420 250 sat 380 416 35 330 950400 415 5 480 246 290310 190							340	3	
Phosphorescence $77 \text{ K} \qquad 300 \qquad 422 \qquad 95 \qquad 430 \qquad 308 \qquad 110 \\ 434 \qquad 110 \qquad 330(\text{sh}) \qquad 70 \\ 450 \qquad 120 \qquad 342 \qquad 55 \\ 330 \qquad 422 \qquad 46 \\ 434 \qquad 50 \\ 450 \qquad 56 \\ 370 \qquad - \qquad - \\ Fluorescence \\ EtOH + SA solution \qquad 298 \text{ K} \qquad 280 \qquad 415 \qquad 79 380 246 \qquad 170 \\ 300 416 220 \qquad 330 100 \\ 330 415 \qquad 930 420 250 \text{sat} \\ 380 416 35 \qquad 330 950 \\ 400 415 \qquad 5 480 246 290 \\ 310 \qquad 190 \\ $							390	2	
$ \begin{array}{c ccccc} Phosphorescence & & & & & & & & & & & & & & & & & & &$								-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Phosphorescence								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		77 K	300	422	95	430	308	110	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				434	110		330(sh)	70	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				450	120		342	55	
$\begin{array}{ccccccccccccc} & & & & & & & & & & & & &$			330	422	46				
$\begin{array}{cccccccccccc} & & & & & & & & & & & & & $				434	50				
$\begin{array}{ccccccccccccc} & & & & & & & & & & & & &$				450	56				
Fluorescence EtOH + SA solution 298 K 280 415 79 380 246 170 300 416 220 330 100 330 415 930 420 250 sat 380 416 35 330 950 400 415 5 480 246 290			370	—	_				
EtOH + SA solution 298 K 280 415 79 380 246 170 300 416 220 330 100 330 415 930 420 250 sat 380 416 35 330 950 400 415 5 480 246 290	Fluoresonoo								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FILORESCENCE	208 K	280	415	70	380	246	170	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	EIGH + SA solution	270 N	200	416	220	200	330	100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			320	415	030	420	250	sat	
400 415 5 480 246 290 330 190			380	416	35	-120	330	950	
			400	415	5	480	246	290	
			-100	415	5	100	330	180	

Table 3 (continued)

		Emiss	ion data		Excita	tion data		
Method	Temperature	i.exc	i, max	RI	i.em	λ _{max}	RI	
	77 K	280	384	100	430	242	sat	
			404	115		334	900	
		300	384	400		365(sh)	350	
			402	440	480	334	78	
		360	384	630		365(sh)	32	
			403	690				
		380	410	70				
		400	—					
Phosphorescence								
F	77 K	310	474	64	430	_	_	
			495(sh)	52	480	252	240	
		330	474	130		264	220	
			495(sh)	100		336	170	
		370	473	35		370(sh)	75	
			495(sh)	30				
Fluorescence								
Adsorbed phase: silica gel	298 K	280	408	43	420	244	135	
Ausoroeu phuse, sineu ger	270 11	300	408	74		325	115	
		330	413	100		360(sh)	88	
		380	414	47	500	325	15	
		400	_	_		•		
Papar Whatman no. 11	208 K	280	406	3	410	250	23	
Taper whatman no. 41	270 K	300	400	7	110	330	16	
		330	410	7	450	250	10	
		370	410	16	450	330	6	
		370	410	10		550	Ū	
Powdered hydrochloride	298 K	280	463	200	380	—		
÷		300	468	190	480	393	235	
		340	466	180		430(sh)	90	
		400	474	230	500	395	200	
		440	500	100		430(sh)	110	
					550	397	75	
						440	64	

" 2 mm round quartz cells were used. b SA, with 1% sulfuric acid (0.5 mol dm⁻³).

In order to confirm this assignment we have carried out additional experiments in the adsorbed phase. When commercial harmalol was adsorbed on silica gel plates and eluted with ethyl acetate-ethanol two spots were observed under UV light ($\lambda_{exc} = 366$ nm; R_f 0.25 and 0.60). The emission fluorescence spectra obtained from the latter spot (R_f 0.60) agreed with the emission spectra in the adsorbed phase of pure harmol [Fig. 3(b)] and that from the former (R_f 0.25) would correspond to that of the pure harmalol in the adsorbed phase [Fig. 3(b)].

To identify the molecular species which are dominant in the organic solvents used, after we had recorded the absorption, emission and excitation fluorescence spectra of purified harmalol (Table 1) and harmol (Table 2) in the liquid phase at 25 °C, we studied the effect of phase rigidity and low temperature (77 K) on the fluorescence spectra. Thus, we recorded the fluorescence spectra both in ethanol solution at 77 K (Table 3), at room temperature adsorbed on a dry surface (Table 3, silica gel, Merck; paper Whatman no. 41), and at room temperature using solid sample (Fig. 3, powdered alkaloid and Table 3, powdered alkaloid hydrochloride).

The fluorescence spectra of harmalol in ethanol solution at room temperature (Table 1, $\lambda_{exc} = 260-390$ nm), in the adsorbed phase [Fig. 3(b), silica gel Merck and Table 3, paper Whatman no. 41] and that of the harmalol hydrochloride in the solid state (Table 3) are similar to those recorded in acidified ethanol solution at room temperature (Table 1) and at 77 K (Table 3 and Fig. 4). The spectra were recorded on exciting, among others, at 280, 300 and 340 nm, where the neutral species

fundamentally absorbs. In all the examples shown in Fig. 3(b)and in Table 3 the emission of the cationic and/or the hydrogenbonded harmalol species can be seen. These results fully support the idea that the excited-state proton transfer along a preexisting hydrogen-bond occurs very rapidly both in the liquid and in the adsorbed phase, most probably without activation energy.^{32.33} Hydrogen-bonded silica gel and cellulose complexes in the adsorbed phase and hydrogen-bonded alcohol complexes in an ethanol medium would be the pre-existing hydrogen-bonded species formed in each medium studied. The excitation spectra obtained agree with the above conclusion [Figs. 3(a) and 4(b) and Tables 1 and 3]. Although harmalol in ethanol solution shows only one emission band, the same ethanol solution at 77 K shows two emission bands [Fig. 4(c), Table 3]. By comparing them with the fluorescence spectra of harmalol in acidified ethanol solution at 77 K and with that in AD and in MSD ethanol solution* (Table 4 and Fig. 5), we conclude that these emissions correspond to the cationic form $(\dot{\lambda}_{max} = 476-480 \text{ nm})$ and the zwitterionic form $(\dot{\lambda}_{max} =$ 545-548 nm) respectively. This result could be explained by taking into account that, simultaneously, the ring nitrogen atom is more basic and the hydroxy group is more acidic for harmalol in the excited state. The modifications of the molecular environment in the solid phase at 77 K relative to that in the

^{*} See the definition of AD and MSD in the Experimental section and the characterization of the zwitterion in the following section.

ethanol liquid phase are the cause of the differences observed in the fluorescence spectra. Besides, the resolution of the emission spectra in ethanol solution is better at 77 K than at room temperature and the former are blue shifted, as has also been suggested elsewhere.^{10.34}

In contrast to the fluorescence emission of harmalol in ethanol solution, the fluorescence of harmol in ethanol solution at room temperature (Table 2) and at 77 K (Table 3 $\dot{\lambda}_{exc}$ = 280, 300 and 340 nm) are different from that in acidified ethanol solution [Fig. 3(b) and Table 3]. In agreement with our previous results (Tables 1 and 2) harmol is less basic than harmalol in both S₀ and S₁ states and the fluorescence emission of the cationic and/or hydrogen-bonded exciplex are observed only if the cationic species exist in the ground state and are shown in the absorption and excitation spectra. The acid character of the silica gel plates used as adsorbing surfaces supports the above conclusions as well as the fluorescence emission of the harmol hydrochloride in the solid state (Table 3). As shown in Table 3, the phosphorescence emission of harmol in ethanol solution at 77 K is different from that in acidified ethanol solution at 77 K. In agreement with the above mentioned results the phosphorescence at 77 K in ethanol solution corresponds to the neutral harmol species.

Although no fluorescence of harmalol could be detected in the solid state, that of harmol (Fig. 3) clearly shows the absorption maximum of the harmol zwitterionic species at 470 nm according to Wolf beis¹⁸ and Vert²⁸ previous assignments for harmol in aqueous solution. The former result could be due to the overlap of cationic harmalol fluorescence band with the harmalol zwitterion absorption band at around 450–470 nm, leading to the fluorescence reabsorption.

Effect of Drying Agents used for Organic Solvents on the

Electronic Spectra of Harmalol and Harmol.-In order to remove small amounts of water from organic solvents we used both neutral alumina (AD solvents) as a column through which liquid was percolated and molecular sieves (4 Å) (MSD solvent). When immediately before use, the solvents were first distilled and then dried as it was described above and according to literature²² instead of dried first and then distilled (DD solvent) some unexpected results were observed. As shown in Table 4, harmalol in AD methanol shows absorption spectrum very similar to that recorded in DD methanol (Table 1) but a new band at $\lambda_{max} = 450$ nm is observed [Fig. 5(a)]. A similar absorption spectrum was observed using MSD methanol. This absorption maximum at $\dot{\lambda}_{max} = 450-460$ nm has also been detected in AD and in MSD ethanol, in water and in ethylene glycol solution (Table 4). Besides, the fluorescence spectra of harmalol in the above mentioned AD and MSD solvents show, at different λ_{exc} values, an intense lower energy emission band around 540 nm (532-550 nm) [Table 4 and Fig. 5(c)]. This emission band is also detected in the fluorescence emission spectra of harmalol in water and in ethylene glycol (Table 4).

By comparing these results with those described by Dogra¹⁴ (methanol solution, pH 10.5–11.4; absorption: $\lambda_{max} = 431$ nm; fluorescence: $\lambda_{max} = 522$ nm) and Olba¹⁵ (NaOH–ethanol solution, [NaOH] = 0.26 mol dm⁻³, $\lambda_{max} = 547$ nm) the new absorption and fluorescence maxima can be assigned to the zwitterionic harmalol species (Scheme 1, Z and Z*).

We also observed that the excitation spectra of neutral harmalol at $\lambda_{em} = 540$ and 550 nm in AD and in MSD ethanol respectively, show a high intensity band at $\lambda_{max} = 468$ and 467 nm [Fig. 5(b)], together with the band corresponding to the cationic harmalol species ($\lambda_{max} = 390$ and 394 nm).

It is noteworthy that no zwitterionic species was observed in the electronic spectra of harmalol in AD and in MSD propan-

Fig. 4 Harmalol: (a) Absorption spectra: in absolute EtOH (----); in EtOH 96% (-----); in EtOH + 1% H₂SO₄ (0.5 mol dm⁻³) (····); (b) Fluorescence excitation spectra: in absolute EtOH: at 298 K (----) at λ_{em} 550 nm, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{em} 510 nm; in EtOH + 1% H₂SO₄ (0.5 mol dm⁻³) (····); (b) fluorescence excitation spectra: in absolute EtOH: at 298 K (----) at λ_{em} 550 nm, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{em} 510 nm; in EtOH + 1% H₂SO₄ (0.5 mol dm⁻³) (····); (b) fluorescence excitation spectra: in absolute EtOH: 1, at 298 K (----) at λ_{em} 550 nm, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{em} 510 nm; in EtOH + 1% H₂SO₄ (0.5 mol dm⁻³); at 298 K (----) at λ_{exc} 340 nm; 3, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; in EtOH + 1% H₂SO₄ (0.5 mol dm⁻³); b, at 298 K (----) at λ_{exc} 280 nm; 4, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; b, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; b, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; b, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; b, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; b, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; b, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; b, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; b, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; b, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; b, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc} 340 nm; b, at 77 K ($\mathbf{0} - \mathbf{0} - \mathbf{0}$) at λ_{exc}

2-ol solution, while only the emission fluorescence of this species was observed in AD *tert*-butyl alcohol solution (Table 4).

Concerning the absorption and fluorescence spectra of harmol in AD and in MSD organic solvents there is evidence of the zwitterionic species only in the latter spectrum. The results of these measurements are compiled in Table 5 and show clearly that the absorption fluorescence maximum at $\lambda_{max} = 443-472$

nm agrees within a few nanometers with the emission fluorescence band found for zwitterionic harmol in basic aqueous (pH 9.5, $\lambda_{max} = 440 \text{ nm})^{28}$ and in basic methanol (pH 10 and 14, $\lambda_{max} = 460$ and 465 nm)¹⁸ solutions. It is noteworthy that no fluorescence of zwitterionic harmol could be detected in aqueous solution (Table 5) while in ethylene glycol and in AD, MSD and DD methanol, and in commercial anhydrous methanol it was always observed (Table 5). As

	Absorption data		Emission data					
 Solvent	i. Kmax	Aª	i.exc	A _{max}	RI	i.em	λ _{max}	RI
AD [*] MeOH	338	0.592	280	470	16	380		_
	456	0.091		545	40	480	252	50
			300	462	27		388	160
				535	17	550	390	100
			340	480	36		463	175
				528(sh)	28			
			380	485	130			
				530(sh)	106			
			450	545				
MSD ^c MeOH	342	0.512	280	480	130	380	_	
	384(sh)	0.331	300	476	72	480	260	500
	456(sh)	0.070	340	476	300		360(sh)	700
			380	464(sh)	520		393	920
				480	600	550	260	115
			450	543	120		360(sh)	170
							390	220
							456(sh)	10
						600	260	21
							360(sh)	30
							392	39
							456(sh)	2
	340	0 501	280	480	10	380		
ADEIOH	340 400(sh)	0.301	260	400	10	180	260	100
	400(sh)	0.043	200	545 476	13	400	200	500
	450(sn)	0.016	300	4/0	0	540	390	500
			220	540	4	540	200	200
			330	4/8	18		391	200
			340	4/9	29		408	150
			380	480	140			
			470	545	60			
MSD EtOH	340	0.489	280	480	3	380	—	_
				550	5	480	260	7
			300		_		394	43
			340	480	6	550	260	5
			380	480	33		394	18
				548(sh)	15		467	33
			470	547	32			
	340	0.516	280	478	12	380	_	
	J - U	0.510	200	546	6	480	260	50
			300	478	6	100	301	230
			340	475	45	540	260	20
			250	478	210	5-0	307	<u>20</u>
			790		210		475	18
			-+00	550	20		-15	10
				550	20			
MSD Bu'OH	340	0.565	280	476	6	380		
			300	474	3	480	265	20
			340	476	12		393	118
			380	474	92			
			470	—	—			
EG ^d	340	0.418	280	470	20	370	_	_
	450	0.248		540	90	390	_	_
		0.210	300	470	44	410	_	
			200	540	44	480	244	80
			330	470	49	100	387	88
			550	540	49	540	280	90
			390	470(sh)	70	5-40	390(sh)	180
			570	537	190		452	370
			450	541	370		102	570
	200	0 905	200	470	154	200		
$EO + 3A^{\circ}$	300	0.000	200	417 467	150	780	262	500
			240	407	600	100	360	770
			460	476	60		301	1000
			-00	7/0	00	540	262	150
						5.0	360	250
							200	200

Table 4 Effect of drying agents on the electronic spectra of harmalol in organic solvents at 298 K ($A = \epsilon lc$; A, absorbance: ϵ in dm³ mol⁻¹ cm⁻¹: λ in nm; RI, relative intensities; c, 3.93 × 10⁻⁵ mol dm⁻³)

 Table 4 (continued)

	Absorptio	Absorption data		Emission data			ation data	
Solvent	Ż _{max}	Aª	i.exc	λ _{max}	RI	i.em	i. A _{max}	RI
	270		•	631	110	300		
H ₂ O	372 450(-h)	0.502	280	231 425(ab)	110	380	258	 160
	430(sn)	0.219	300	423(sn)	20	470	230 362(sh)	250
				519	44		386	280
			340	429	240	530	258	170
			380	496	330		362(sh)	250
			430	533	360		400	340
							432	360

^a Absorbances are indicated when more than one species absorb, square 1 cm path quartz cells were used. ^b Solvent distilled and then percolated through a chromatography column filled with basic aluminium oxide. ^c Solvent distilled and then dried over molecular sieves. ^d EG, ethylene glycol. ^c SA, with 1% sulfuric acid (0.5 mol dm⁻³).

shown in Figs. 1–5 and in Tables 1–5, the absorption and especially the fluorescence emission of harmalol are more sensitive to the presence of water, acidic impurities and basic impurities than those of harmol. Besides, harmalol fluorescence is more sensitive to basic impurities than harmaline is.¹⁰ The presence of the hydroxy group (phenolic group) in the harmalol structure and the interaction of the phenolic proton of the harmalol cation with a basic compound B in the ground and in the S₁ state (Scheme 1) accounts for the results obtained.

Prototropic Equilibria in Organic Solvents.—Some of the acid-base equilibria of harmalol in S_0 and S_1 states are indicated in Scheme 1. In a few organic media there is a ground state equilibrium between neutral (N) and cationic (C) harmalol (Table 1, absorption data and Fig. 1). Also, according to our results, in all organic media studied there is an excited state equilibrium between excited neutral (N*) and excited cation (C*), emitting only the C* species (Scheme 1, Table 1, absorption and emission data and Figs. 2 and 3). Thus we concluded that harmalol in the electronic excited state (N*) is more basic than in the corresponding ground state (N) and that the prototropic process in the S_1 state is of comparable rate with fluorescence decay even in acetonitrile, dichloromethane and chloroform solution (Scheme 1, and Table 1, absorption and emission data).

As has been previously discussed when the alcohols used as solvents were percolated through a basic aluminium oxide chromatographic column or dried over molecular sieves a third absorbing species could be observed in the absorption, excitation and emission fluorescence spectra (Tables 4 and 5, Fig. 5). As is shown in Scheme 1, the presence of traces of a base such as aluminium oxide or molecular sieves (B in Scheme 1) in the alcoholic media would explain this behaviour. The results mentioned above allow us to conclude that the harmalol phenol moiety in the electronically excited state is more acid than in the ground state and that the process to give Z^* is of comparable rate with fluorescence decay in AD and MSD alcoholic media (Tables 4 and 5).

The above result also suggests that the formation of zwitterion occurs only by a kind of dissociation of the hydroxy group of harmalol and is not due to tautomerism. The red shift is in good agreement with those reported for the dissociation of the hydroxy group of aromatic hydrocarbons.³⁵

To evaluate the modification of acidity constants ($\Delta p K_a$) in the organic media studied, we used the modified ¹⁰ Forster cycle method.³⁶⁻³⁹

$$\Delta p K_a = p K_a(S_1) - p K_a(S_0) = 0.625 \times (\Delta \bar{\nu})/T \quad (1)$$

In eqn. (1), $\Delta \tilde{v}$, which is expressed in reciprocal centimetres, is the difference between the energy of the 0–0 electronic

transition in the free base (N) and the corresponding energy in the protonated molecule (C). In the present study we calculated $\Delta p K_a'$ as follows: the energy for the free base was estimated from the least energetic maximum of the absorption spectrum and that for the protonated molecule was estimated by taking the average of the energy corresponding to the least energetic maximum of the absorption spectrum and the energy corresponding to the most energetic maximum of the emission spectrum. This procedure was used in all the examples studied.

The $\Delta p K_a'$ values calculated are listed in Table 6 and by comparing with the $\Delta p K_a$ and $\Delta p K_a'$ for harmalol obtained by Tomas Vert¹¹ (Table 6, see footnote) we can conclude that in polar hydroxylic solvents (organic solvents with $\alpha > 0.44$)^{26.27} the $\Delta p K_a'_{(NC)}$ values are lower than those obtained in non-hydroxylic organic solvents (acetonitrile $\alpha = 0.19$, dichloromethane $\alpha = 0.30$ and chloroform = 0.44).^{26.27} Similar behaviour of $\Delta p K_a'_{(NC)}$ of harmaline had been described elsewhere.¹⁰

Finally we also studied the effect of the presence of added water on the absorption (Fig. 1) and on the fluorescence emission spectra of harmalol and harmol in alcoholic solution (Table 7; $\dot{\lambda}_{exc} = 330$ nm; dependence of the RI_c/RI_o ratio on the presence of water added, RI: relative intensity of the fluorescence emission, RI_o: RI of cation emission in the organic media without added water; RI_c: RI of cation emission in the organic media with added water). As shown in Table 7, harmalol is less sensitive to the presence of water than harmaline is (see ref. 10). The presence of the hydroxy group in the harmalol structure would account for this behaviour. In agreement with results previously obtained with harmaline the most modified spectra are those in propan-2-ol solution (Table 7) whereas those in tert-butyl alcohol solution are modified least. This anomalous behaviour could be explained by taking into account the Swain-Grunwald mechanism previously discussed.^{29.30} In contrast, slight modifications were observed in the absorption and emission spectra of harmol when water was added to the alcoholic solutions.

These results, and those previously reported,¹⁰ lead us to conclude that the Taft and Kamlet α scale of solvent hydrogen-bond donation ability^{26,27} and the acidity alcohol scale of Ballinger²⁴ and Hine²⁵ must be used together with the Swain–Grunwald model^{29,30} and the donor strength scale (D_s) of Sandström and Persson³⁹ in order to explain the prototropic equilibria of harmalol in the S₀ and S₁ states observed in organic solvents and in organic solvent–water mixtures.

Conclusions

The results presented here show the electronic spectra (absorption, fluorescence excitation and emission spectra) of harmalol in different organic solvents, in adsorbed phase and in

Fig. 5 Harmalol. (a) Absorption spectra; commercial anhydrous MeOH (----), AD MeOH (----), MSD MeOH (----) MSD MeOH + 10% water (----); (b) fluorescence excitation spectra, λ_{em} 550 nm; (c) fluorescence emission spectra, λ_{exc} 340 nm.

the solid state. Firstly from these data, the effect of the presence of water in the organic media on the electronic spectra (Fig. 1) and on the prototropic equilibria in the ground and excited singlet state (Scheme 1, Fig. 1 and Table 7) have been described, showing the importance of the use of anhydrous organic solvents. Secondly, the effect of the presence of traces of aluminium oxide and molecular sieves in alcoholic media on the prototropic equilibria shown in Scheme 1 has been discussed. Thirdly, the unusual behaviour of electronically excited harmalol in organic solvents has been described for the first time. The results obtained have been compared with the electronic spectra of harmol run in similar media. Finally, this behaviour has been compared with that previously described in water. $^{11-16}$

Acknowledgements

This investigation was supported by a grant (no. EX 113) awarded by the Universidad de Buenos Aires and by a grant (PIA-90 0211-1087) awarded by CONICET. The authors also receive fellowship support from Comisión Nacional Quinto Centenario and ICI (Spain) and CONICET (Beca Doctoral): M. C. Biondic and CONICET (Research member): R. Erra-Balsells. We thank UMYMFOR (FCEyN-UBA-CONICET)

Table 5 Effect of drying agents on the electronic spectra of harmol in organic solvents at 298 K ($A = \varepsilon lc$: A, absorbance: ε in dm³ mol⁻¹ cm⁻¹; λ in nm: RI. relative intensities: c. 3.93 × 10⁻⁵ mol dm⁻³)

Solvent λ_{max} log ε^{μ} λ_{exc} λ_{max} RI λ_{em} λ_{max} F AD ^h MeOH 302 4.26 280 351(sh) 200 380 258 3 324(sh) 3.87 365 260 300 3 336 224 2 456 90 336 22 365 420 258 2 300 351(sh) 320 420 258 2 365 420 300 1 456 90 336 10 300 1 410(sh) 220 324 1 456(sh) 140 336 1 336 1 336 1 330 351(sh) 220 460 255 1 366 310 300 1 456 130 336 1 456 10 300 254 2 326 3.90 365 210 300
AD ^h MeOH 302 324(sh) 4.26 3.87 280 365 351(sh) 260 200 380 380 258 300 3 338 3.77 410(sh) 130 324 2 456 90 336 2 300 351(sh) 320 420 258 2 365 420 300 1 410(sh) 220 324 1 456 90 336 1 300 351(sh) 320 420 258 2 365 420 300 1 456(sh) 140 336 1 330 351(sh) 220 460 255 366 310 300 1 456(sh) 140 324 1 456 130 336 1 326 3.90 365 210 300 2 326 3.90 353(sh) 150 380 254 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
456 90 336 2 300 351(sh) 320 420 258 2 365 420 300 1 410(sh) 220 324 1 456(sh) 140 336 1 330 351(sh) 220 324 1 456(sh) 140 336 1 330 351(sh) 220 460 255 366 310 300 1 456 130 336 1 456 130 336 1 456 130 336 1 456 130 336 1 456 130 336 1 326 3.90 365 210 300 338 3.86 454 110 324(sh) 1 366 390 420 254 2 410(sh) 200 300 2 330 353(sh) 260 338 1 366 390 <t< td=""></t<>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
303 230 400 254 2 454 230 300(sh) 1 390 465 19 334 2
454 230 300(sh) 1 390 465 19 324 2
390 465 10 324 2
390
AD EtOH 304 4.20 280 353(sh) 325 380 253 6
324 3.81 366 370 300 5
229 2.40 442 20 222 2
$-\frac{1}{200}$ $-$
$300 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
366 690 420 253 1
462 30 300 1
330 353(sh) 400 322
365 540 334
462 30 480 253
280 467 6 205
360 407 0 303 2
327
338 2
396
MSD EtOH 304 4.13 280 352 250 380 254 54
324 3.69 365 320 302 5
338 3.54 300 $352(sh)$ 650 $324(sh)$ 4
365 850 338 3
330 352 440 420 255
380 430 2 324(sh)
472 4 338 5
400 472 7 460 256
301
301 37/(sh)
524(SII) 530
338 402
EU 304 4.23 280 370 150 380 258 24
328 3.96 415 200 300 25
338 3.89 455(sh) 150 324 15
300 370 240 229 14
414 330 420 238 40
455(sh) 250 296(sh) 34
330 370 170 306(sh) 36
418 430 327 41
418 430 327 41 380 443 68 365(sh) 15
418 430 327 41 380 443 68 365(sh) 15 460 258 30
418 430 327 41 380 443 68 365(sh) 15 460 258 30
418 430 327 41 380 443 68 365(sh) 15 460 258 30 300 26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
418 430 327 41 380 443 68 365(sh) 15 460 258 30 300 26 326 25 338 24
418 430 327 41 380 443 68 365(sh) 15 460 258 30 300 26 326 25 338 24 365(sh) 10
418 430 327 41 380 443 68 365(sh) 15 460 258 30 300 26 326 25 338 24 365(sh) 10 EG + SA* 328 4.33 280 419 170 380 262 74
418 430 327 41 380 443 68 365(sh) 15 460 258 300 26 326 25 338 24 365(sh) 10 10 365(sh) 10 EG + SA* 328 4.33 280 419 170 380 262 74 370(sh) 3.83 300 418 440 328 75
$EG + SA^{e} = \begin{array}{ccccccccccccccccccccccccccccccccccc$

Table 5 (continued)

	Absorptio	on data	Emiss	ion data		Excita	ation data		
	i, _{max}	log ɛª	i.exc	λ _{max}	RI	i.em	λ max	RI	
H ₂ O	322 358(sh)	4.05 3.73	280 300 330 410	421 420 420 —	120 380 700 —	380 420 450 550	323 355 246 320 355(sh) 246 324 360(sh) 238 300 326 360	65 35 700 610 350 530 430 310 40 10 11 8	

" 1 cm path quartz cells were used. ^b Solvent distilled and then percolated through a chromatography column filled with basic aluminium oxide. ^c Solvent distilled and then dried over molecular sieves. ^d EG, ethylene glycol. ^e SA, with 1% sulfuric acid (0.5 mol dm ³).

Table 6 $\Delta p K_a$ Values for harmalol in organic solutions at 25 °C⁴

Solvent	$\Delta p K_a'$
MeOH	11.7
EtOH	11.9
Pr ⁱ OH	12.5
Bu'OH	12.3
CH ₁ CN	13.3
CH ₂ Cl ₂	13.4

" Ref. 11, $\Delta p K_a$ and $\Delta p K_a$ values in aqueous solution: 10.0 and 11.3 respectively, see text for definition.

Table 7 Effect of added water on the emission spectra of harmalol in organic solvents (λ in nm; λ_{max} emission fluorescence wavelength of cation: R1: relative intensities, they reflect the relative quantum yields: RI_c and RI_o: RI of cation emission with and without added water; c: 3.93 × 10⁻⁵ mol dm⁻³)

Solvent	Added water (%)	i.exc	i. Amax	RI _c /RI _o
MeOH		330	478	1.00
Meon	1.35	550	470	1.00
	7.09			1 41
	10.78			1.65
	14.30			1.81
EtOH	_	330	480	1.00
	2.08			1.06
	4.78			1.20
	8.78			1.43
	11.37			1.58
Pr ⁱ OH		330	480	1.00
	0.86			1.06
	3.12			1.24
	5.79			1.76
	8.24			2.47
	10.44			2.82
Bu'OH	_	330	475	1.00
	0.96			1.00
	2.90			1.00
	5.06			1.00
	8.73			1.00

for chemicals and spectroscopical measurements, *Laboratorio* de Analisis de Trazas (FCEyN-UBA) for assistance with the Perkin-Elmer LS 5 spectrometer and Dr. C. G. Colombano for stimulating discussions.

References

- 1 R. Erra-Balsells and A. R. Frasca, Tetrahedron Lett., 1984. 25, 5363.
 - 2 R. Erra-Balsells and A. R. Frasca, An. Asoc. Quim. Argent., 1985, 73, 207.
 - 3 S. M. Bonesi and R. Erra-Balsells, J. Photochem Photobiol., A. Chem., 1991, 56, 55.
 - 4 R. Erra-Balsells and A. R. Frasca, Tetrahedron, 1983, 39, 33.
 - 5 M. C. Biondic and R. Erra-Balsells, J. Photochem Photobiol., A. Chem., 1990, 51, 341.
 - 6 T. Robinson, The Chemistry of Alkaloids, Springer, Berlin, 1968.
 - 7 N. S. Buchholtz and W. O. Boggan, Biochem. Pharmacol., 1977. 26, 1991.
 - 8 C. Mitra and S. R. Guha, Biochem. Pharmacol., 1979, 28, 1137.
 - 9 R. A. Abramovitch and D. L. Spenser, *Adv. Heterocycl. Chem.*, 1964, 3, 79.
 - 10 M. C. Biondic and R. Erra-Balsells, J. Chem. Soc., Perkin Trans. 2, 1992, 1049.
 - 11 F. Tomas Vert, I. Zabala Sanchez and A. Olba Torrent, J. Photochem., 1984, 26, 285.
 - 12 M. Krishnamurthy and S. K. Dogra, J. Chem. Soc., Perkin Trans. 2, 1986, 1247.
 - 13 S. G. Hadley, A. S. Muraki and K. Spitzer, J. Forensic Sci., 1974, 19. 657.
 - 14 M. Krishnamurthy and S. K. Dogra, *Photochem. Photobiol.*, 1986, 44, 571.
 - 15 A. Olba, P. Medina, A. Codoñer and S. Monso, J. Photochem., 1987, 39, 273.
 - 16 A. Pardo, D. Reyman, E. Martin, J. M. L. Poyato, J. J. Camacho, J. Hidalgo and M. Sanchez, J. Lumin., 1988, 42, 163.
 - 17 O. S. Wolfbeis, Molecular Luminescence Spectroscopy: Methods and Applications, ed. S. G. Schulman, Wiley, New York, 1985, Part 1.
 - 18 O. S. Wolfbeis and E. Fuerlinger, Z. Phys. Chem. Neue. Folge., 1982. 129S, 171.
 - 19 D. D. Perrin and W. L. F. Armarego, *Purification of Laboratory Chemicals*, Pergamon Press, New York, 1988.
 - 20 D. R. Burfield, R. H. Smithers and A. Sui Chai Tom. J. Org. Chem. 1981, 46, 629.
 - 21 C. Reichardt, Solvent Effects in Organic Chemistry. Verlag Chemie. New York, 1979.
 - 22 C. Laurence, P. Nicolet, M. Lucon, T. Dalati and C. Reichardt, J. Chem. Soc., Perkin Trans. 2, 1989, 873.
 - 23 C. H. Rochester in *The Chemistry of the Hydroxyl Group*, ed. S. Patai. Interscience, London, 1971, pp. 327.
 - 24 P. Ballinger and F. A. Long, J. Am. Chem. Soc., 1960. 82, 795.
- 25 J. Hine and M. Hine, J. Am. Chem. Soc., 1952, 74, 5266.
- 26 M. J. Kamlet, J. L. M. Abboud, M. H. Abraham and R. W. Taft, J. Org. Chem., 1983, 48, 2877.
- 27 Y. Marcus, J. Solution Chem., 1991, 20, 929.
- 28 F. Tomas, I. Zabala and A. Olba, J. Photochem., 1985. 31. 253.
- 29 E. Grunwald, R. L. Lipnick and E. K. Ralph, J. Am. Chem. Soc., 1969. 91, 4333.
- 30 U. Berg and W. P. Jencks, J. Am. Chem. Soc., 1991, 113, 6997.
- 31 Uvasol, disolventes y sustancias para espectroscopia, ed. E. Merck (Spanish), Darmstadt, 1985.
- 32 J. Waluk, J. Herbich, D. Oelkrug and S. Uhl, J. Phys. Chem., 1986, 90, 3866.

- 33 J. Waluk, S. J. Komurovski and J. Herbich. J. Phys. Chem., 1986, 90, 3868.
- 34 S. Suzuki, T. Fujii and K. Sato, Bull. Chem. Soc. Jpn., 1972, 45, 1937. 35 J. F. Ireland and P. A. H. Wyatt, Adv. Phys. Org. Chem., 1976, 12,
- 132.
- 36 Th. Foerster, Z. Elektrochem. Angew. Phys. Chem., 1950, 54, 42.
 37 C. A. Parker, Photoluminescence of solutions, Elsevier, London, 1968, ch. 4.
- 38 J. R. Lakowicz, Principles of Fluorescence Spectroscopy. Plenum. New York, 1983.
- 39 M. Sandström, I. Persson and P. Persson, Acta Chem. Scand., 1990. 44, 653.

Paper 3/00230F Received 13th January 1993 Accepted 21st January 1993